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1. Introduction

Machine learning (ML) provides a broad field of possibil-
ities to improve manufacturing processes, but often the data
basis of a single organisation is too limited for an effective
model training. Concerns regarding privacy or intellectual prop-
erty and the fear of loss of control on the shared data are still
some of the most common barriers in cooperation across com-
pany borders [10]. Federated learning (FL) in combination with
intellectual property preserving methods represents a solution
to address these concerns by preventing the data from leaving
the data owner’s field of control. Previous research has already
presented practical solutions, but is mostly bound on the pres-
ence of a centralized entity to manage orchestration and access

control or on small groups of participants and requires a lot
of manual background tasks, such as building up cooperation
networks and negotiating legal agreements. Today, in a world
of constant changes and unpredictable interruptions, especially
small and medium-sized enterprises (SMEs) need a more ag-
ile, self-sovereign and ready-to-use solution that is not tied to a
centralized platform operator or implies other forms of lock-in
effects by the service architecture. Our approach uses the dis-
tributed ledger technology (DLT) based Ocean Protocol to au-
tomate data access control with Smart Contracts in a standard-
ised digital form. We extended these concepts by using compo-
nents of Gaia-X, making it possible to offer and consume FL
resources to some extent independent from the used machine
learning model on a digital, decentralized and self-sovereign
data and service marketplace that opens the reach to a wider
range of participants.
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need to directly share the machine data with other participants, addressing concerns regarding to privacy, intellectual property and potential
reverse engineering of proprietary process information through competitors. Previous research focused mainly on federated learning models,
mostly managed and orchestrated by some kind of centralized authority. The presented approach shows a more decentralized, self-sovereign
concept of federated learning for the manufacturing industry, expanding its applicability to a broader range of participants. It combines existing
solutions for machine learning and Compute-to-Data by Ocean Protocol with the concept of dataspaces as defined by Gaia-X. The methodology
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2. Related work

With the increase in adoption of Industry 4.0 in Europe [5],
the demands of using its benefits across companies have in-
creased as well [19]. In the current landscape of abundant data
and heightened privacy concerns, FL has emerged as an evolved
approach to ML, transitioning the emphasis from abstract prin-
ciples to practical, real-world adjustments and the challenges
they entail.

While conventional centralized ML methods are efficient,
they raise concerns about data privacy [20]. This issue becomes
especially significant when data needs to stay within its secu-
rity perimeter, which is often the case in healthcare or indus-
trial data protection [24]. FL represents a specific example of
the more general approach of “bringing the code to the data,
rather than the data to the code.” It tackles the essential issues
of data privacy, ownership and locality [3]. The distributed ML
aspect of FL facilitates further advantages of decentralized data
sources [1], allowing industry-typical SMEs with limited pro-
cessing and data collection capabilities to gain deeper insights
into their data and produce well-performing local ML models
[27]. Moreover, this aspect enables model training on a large
number of devices or data sources [17], rendering it highly scal-
able. Thus, the adaptability to growing data sets, diverse ap-
plications and numerous participants is ensured, making FL a
versatile and practical method for a wide range of real-world
scenarios from industry edge devices to massive IoT networks
or even holistic digital twin platforms, without compromising
its effectiveness.

One of the main concerns in FL is the centralization aspect,
taking on various forms [21]. For ecosystems with equal part-
ners, a decentralized approach is considerably more practical
than a centralized one, because the partners do not need to agree
on a central authority [26]. The solution to this problem can be
the use of a distributed technology like DLT.

DLT, with its immutable and transparent ledger, can facil-
itate secure and verifiable transactions within FL ecosystems.
Smart Contracts on distributed ledgers can automate participant
coordination, access control and data sharing agreements [18],
ensuring data provenance and integrity while enabling transpar-
ent reward distribution based on data contribution and compu-
tation effort. This enables collaboration among disparate and
potentially competing entities.

Ocean Protocol, with its self-sovereign Compute-to-Data
approach, complements this by allowing data to remain on
premises, only granting selected algorithms temporary access
to compute on private data [22]. This methodology not only
preserves privacy and intellectual property but also reduces data
transfer costs. The protocol’s use of Smart Contracts to manage
access control in a self-sovereign manner and provide data and
training audit trails, further strengthens trustless collaboration,
which is essential for FL projects among competitors.

But there is a missing link between the trust provided within
the DLT and the trust provided from the outside world. Initia-
tives like Gaia-X with its Trust Framework aim to enhance trust

into federated solutions by providing a framework for trusted
ecosystem participants and digital services [29].

Gaia-X is a joint European initiative which aims to define
a framework and rules for a self-sovereign and secure data ex-
change and digital service consumption based on a standard-
ized trust model. The concepts are defined in several publi-
cations provided by the Gaia-X AISBL which are constantly
updated, modified and extended. The Gaia-X Trust Framework
e.g. defines four types of rules [12]: (1) Serialization format and
syntax; (2) Cryptographic signature validation and validation of
the keypair associated identity; (3) Attribute value consistency;
(4) Attribute veracity verification.

By unifying these rules, Gaia-X enables an interopera-
ble trust model. This model is built upon self-descriptions,
which are technically implemented as verifiable credentials
[11]. Several projects are building on Gaia-X principles,
for example: Catena-X, Smart Connected Supplier Network,
Manufacturing-X and EuProGigant, that aim to utilize Gaia-X
for the manufacturing industry [23]. EuProGigant has proposed
a concept to bring the Gaia-X Trust model to production ma-
chines with an architecture for edge devices [8]. Furthermore,
the architecture can be used for a resilience concept based on
Gaia-X built upon Self-Descriptions, system theory and control,
anomaly detection and self-orchestration [33]. Despite the high
potential of Data- and Service Ecosystems, the economic fea-
sibility is not there for every case [25], business models should
be developed first [14]. One of these promising use cases will
be presented in this paper.

3. Federated Learning based on Compute-to-Data and
Gaia-X

3.1. Architecture

Compared to centralized ML, FL introduces additional com-
plexity to the infrastructure as well as to the training process it-
self through its distributed nature. Figure 3.1 shows an architec-
ture for decentralized FL. There are two forms of participants:
(1) data owners, that want to offer their data sets for model train-
ing through FL and (2) model owners, that want to consume
these data assets to train and improve their new or existing ML
models. The decentralized orchestration layer is an abstraction
for a set of services which can be provided by the two partic-
ipants themselves to initiate and conduct the training process
through FL without the need of an additional party like a data
trustee. It is built on top of Ocean Protocol, which incorporates
the necessary services for the participants to create and con-
sume assets, as well as the accounting part for financial trans-
actions related to the procurement of the assets. To make the as-
sets and all needed services accountable and trusted, this layer
also includes a Clearing House service, as defined by Gaia-X,
and a catalogue service. Therefore, each asset, service and each
participant need to be expressed in form of a Self-Description
which is verified by an external trust anchor.

As described before, the anchors are implemented as Ver-
ifiable Credentials. As basic trust anchor for the participant
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Fig. 1. Federated Learning Architecture

the Gaia-X Clearing Houses are used, that are responsible for
linking the digital identity to the real participant by verifying
their Decentralized Identities (did) and for enforcing a stan-
dardized form of the Self-Description describing the data and
services which is called Gaia-X Service Offering. Data owners
and model owners can built up trust by providing offerings in
the FL ecosystem.

Before FL can take place, the data owners need to decide
which access controller and Compute-to-Data environment to
use with their data, or provide it themselves entirely. Using
Ocean Protocol, the data owners can then publish their respec-
tive data services, assigning them did:op identifiers that are then
used for further identification. In addition, the data owners can
specify within the metadata which parties are allowed to com-
pute on the data. A catalogue service based on Smart Contracts
and an off-chain metadata cache is utilized to enable offerings
to be searched and filtered based on their metadata. Direct ac-
cess to the provided datasets is restricted to the access controller
chosen by the data owner. In turn a set of whitelisted Compute-
to-Data environments can be connected to the access controller
to allow Compute-to-Data access. Direct access from outside
these instances is not permitted.

A model owner that wants to initialize a FL process creates
a new model or takes an existing one from his ML platform. In
our present approach an instance of craftworks’ navio is used,
but compatibility to other platforms, like Software AG’s cumu-
locity, is planned. In the next step, the desired datasets for the
training process are selected based on their did:op identifiers.
The previously mentioned catalogue services can help finding
the appropriate offerings. Any whitelisted third party, includ-
ing the model owner, can then purchase access to the datasets,
Compute-to-Data environments and model, by signing Smart

Contract transactions on a supported Ethereum Virtual Machine
(EVM) compatible network. Afterwards, a container that con-
tains the global model and the necessary algorithms for training
is distributed to the various Compute-to-Data instances. After
the local training on the Compute-to-Data instances is finished,
the newly trained local models are returned to the model owner
for further aggregation to a new global model.

FL includes a variety of methods for aggregating local model
updates to a central instance. One example of this is Federated
Averaging, whereby local models compute gradients on their
respective data, which are then averaged on the central aggrega-
tion instance, i.e. under the control of the model owner, to pro-
mote the newly aggregated model as the global model. Another
approach, known as Federated Proximal Gradient Descent, en-
ables local models to take gradient descent steps on their re-
spective data. The aggregation instance then combines these up-
dated models by applying a proximal operator to ensure fairness
and convergence. The model itself is typically structured as ei-
ther a global parameter server, where the model owner’s ML
platform maintains the global model, or as a weighted combi-
nation of local models. The specific formatting of the model
depends on the objectives and setup of FL.

Crucially, FL preserves data privacy and intellectual prop-
erty by sharing only model updates, such as gradients or model
parameters, while the actual data owner’s raw data remains se-
curely stored on local devices. However, the current approach
lacks model protection, enabling the owner of the Compute-
to-Data instance to access the ML model distributed by the
model owner. Although this issue may not be significant for an
early stage demonstration, it should be taken into account for
production-level implementations.
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3.2. Usage in manufacturing

Predictive analyses of manufacturing processes are playing
an increasingly important role in maintaining the competitive-
ness of production companies. With the help of predictive main-
tenance, productivity increases of up to 25% can be achieved
by detecting the failure of machine tool components at an early
stage. In addition, unplanned downtime is expected to be re-
duced by up to 70% and maintenance costs by up to 25% [7].
Data-driven modeling using the available data from the comput-
erized numerical control (CNC) [16] is a promising approach
for predictive maintenance, if the concept on which the mod-
els are trained remains as similar as possible. In the case of
machine tools, changes to the concept, which are subject to
the data, are e.g. machine tools of different providers or de-
sign using different components and sensor systems. In order to
achieve a high level of accuracy in data-driven models, a large
amount of data from the same or similar machines is therefore
required. The quality and quantity of the data is hereby the lim-
iting factor for improving the prediction quality [7].

Since the development of predictive maintenance models ad-
ditionally requires a high degree of domain knowledge for a
complete and correct mapping of the structure and states of a
given system or component [13], solutions in the form of pre-
dictive maintenance services can often only be achieved with
the expertise of component manufacturers.

SMEs, which make up the majority of companies in the Ger-
man manufacturing industry [28], may lack the necessary do-
main knowledge and commission component and service de-
velopers to implement data-driven models for predictive main-
tenance. However, due to lack of identical machines, they are
often unable to aggregate an adequate database for the train-
ing of reliable data-driven models. Usually it is not possible
to extend the database by adding data of similar machines of
other manufacturers, as this requires companies to share their
data, resulting in the risk to disclose know-how that is tied up
in the data and thus the sovereignty over the company’s own
data cannot be maintained. This results in many closed data si-
los in the landscape of manufacturing companies in Germany,
which means that the technical possibilities available are not
being used sufficiently and there is no broad-based scaling of
information provision and use [31].

The use of the proposed decentralized and privacy-
preserving FL approach in manufacturing companies can con-
tribute to overcoming these hurdles in this exemplary use-case.
As described above, the paradigm shift to the Code-to-Data ap-
proach eliminates the need to disclose or share data. The fed-
erated model training takes place exclusively on decentralized
local container runtimes. This way it is guaranteed that propri-
etary knowledge in the process data of the manufacturers stays
within the company and isn’t accessible by others. This and the
principles of Gaia-X foster trustful cooperation and knowledge
exchange across company boundaries may solve the problem
that in today’s industrial practice, information is only provided
to the necessary extent. This allows component manufacturers
and service developers to access a larger amount of data from
the same or similar machine tools for the development of pre-

dictive services with higher accuracy an thus higher reliability
in model-based decisions. The usage of Gaia-X ensures that not
only the provided training data itself, which is usually available
in the form of time series, but also the machine is described
by metadata. Furthermore, in the future this approach will al-
low the machine vendor to hand out a verifiable product pass of
the machine. This can than be extended with other component
vendor information. With these information and the possibility
of selective disclosure with verifiable credentials insights into
the machines can easily be shared in a self-sovereign way. This
ensures that, despite decentralized data sets, only data from the
same or similar machines can be matched and used for training
and applying the specific models, so that the concept remains
the same. This means that a holistic representation of different
machine tool designs does not have to be taken into account
when creating the model.

The within EuProGigant developed validation platform can
be used for demonstration of the developed FL approach. The
HELLER CNC-ProfiTrainer forms the basis of the validation
platform. It is a portable machine tool for training and demon-
stration purposes, which faithfully reproduces a fully-fledged
machine with industrial components such as a CNC and drive
control on a scale of 1:4. The validation platform is a further
development of our demonstrator, which has been presented for
the first time at the Hannover Messe 2022. Since then, the cur-
rent implementation of Gaia-X Compliance (currently 22.10)
and self-sovereign Compute-to-Data have been presented here.

The validation platform addresses the use case of tool con-
dition monitoring as subdomain of predictive maintenance with
the central question: how can medium-sized companies, with
often small machinery, benefit from an experience of many pro-
cesses on similar machines by a cross-company, sovereign ex-
change of information, so they are able to adapt their machining
processes more effectively regarding tool wear [9]?

For this purpose, three identical machine tools are used to
record data from the CNC during manufacturing of a work-
piece using the machines’ OPC UA servers and make the data
available as an asset in the ecosystem in a self-determined man-
ner. Based on the process information contained in the data, a
service developer can create data-driven models that can make
an automated statement about the condition of the tool. The
Gaia-X Framework creates a basis of trust with the help of data
usage agreements, which enables service developers to con-
sume and aggregate data for training the models outside the IT
system environments of the data owners. On the other hand, an
existing Compute-to-Data instance is used for executing pro-
cess analyses on production data. This enables the execution of
the trained models on the data owner’s IT system environment
without the need to share any further data.

Despite the established trust layer the above described con-
cerns of the manufacturing companies still limit the willingness
to provision the process data for model training. With the help
of decentralized FL, the existing use case can be augmented
by data sovereign training of the models demonstrating the ar-
chitecture developed in this paper. For this purpose, 4 similar
Heller CNC-ProfiTrainers are available, which are located at
PTW — TU Darmstadt (2), TU Wien and IGH Infotec AG. In
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the first iteration one of the machines at PTW using Beckhoff
instead of Siemens components isn’t considered because of its
incongruent concept to the other machines in form of differ-
ent drives, CNC and drive control. By using very similar con-
structed machines the deviation in behaviour is expected to be
minimal. But the validity of the described FL-approach has to
be proofed for different machine types and concepts in future
works. The only difference of the remaining three machines is
that one of them has 5-axis kinematics. The remaining two ma-
chines only have 4-axis kinematics due to the absence of the
rotary A-axis. However, this is negligible for the following im-
plementation, as the manufacturing processes used to show the
approach are only carried out using the three translatory axes.

Our solution prioritizes flexibility by remaining agnostic to
the explicit implementation of machine learning models and the
federation approach. This allows the model owner to choose
the most suitable implementation for their specific use case.
The concrete implementation of our validation platform’s data
model relies on a federated variant of XGBoost classifiers [6].
Following the training of individual XGBoost models at the
clients, the model owner aggregates the global model using
bagging aggregation techniques [2] and distributes the updated
global model to the clients. Bagging, short for Bootstrap Aggre-
gating, is a machine learning ensemble technique designed to
improve the stability and accuracy of models and can be lever-
aged for aggregating federated models [4, 30].

Our dataset comprises 41,501 labeled samples, encompass-
ing 22 columns from the three above mentioned machines. No-
tably, 16 columns contain numerical sensor readings, while 8
represent categorical parameters. These features describe var-
ious aspects of the CNC-ProfiTrainers, including positions,
currents, torques, speeds, and tool information. The binary-
encoded labels reflect the quality of each sample. Due to the
dataset’s imbalanced nature, favoring good quality, we assess
our results on independent test sets for all clients using the F1-
score metric.

With the help of these instances of the validation platform,
it is possible to demonstrate that, following component produc-
tion and the automated provision of data sets as asset in the
ecosystem, decentralized training can be carried out on the re-
spective container runtimes on the edge computers of the ma-
chine tools. For this purpose, a global model for predicting the
tool state is deployed from an instance of craftworks’ navio
to the edge systems with the help of a container and then re-
turned to navio for aggregation. Using the did:op identifiers
and the catalogue service, a description of both the data set and
the model to be trained ensures that the data set corresponds
to the expected input features of the machine learning model.
The trained and aggregated model then can be consumed by
the data provider from navio to passively identify outliers and
empower the machine operator to make informed decisions.
In order to enable the interoperability of different data models
of the data sets provided, the use of standards or standardized
data models and submodels of the asset administration shell has
been envisaged. Specifically, for the application of the proposed
FL approach with the validation platform the existing pipeline
of collecting data samples semantically described according to

the OPC UA companion specifications through the OPC UA
servers of the machines was used. These samples with a sam-
pling frequency of 8 Hz were packaged according to the about
90 second long reference face milling process in a standardized
JSON-file containing the aforementioned data. These files then
can be used for training the XGBoost models.

However, for this FL to work, sufficient edge computing re-
sources have to be provided by the data owners. This may be
a problem as most edge devices on the shop floor are to small
to train or modify large models [15]. The provision of these
computing resources to train the models results therefore in
costs for the data owners. For the provided computing power,
the ecosystem offers, as described, the possibility of compensa-
tion through automated financial transactions. This can create
monetary incentives to provide data for component and service
developers and opens up new business models for the manufac-
turing industry. These monetary aspects need to be examined
more closely in future studies.

Across a value network, multiple parties, such as component
suppliers, assembly plants, and logistics providers, can partici-
pate in collaborative model training without revealing their pro-
prietary knowledge. This and the principles of Gaia-X foster
trustful cooperation and knowledge exchange across company
boundaries, ultimately leading to more reliable and longer use
of production facilities as well as improved product quality and
process efficiency, but also opening up new business models for
different domains and use cases like process planning or peak
shaving for energy efficiency [32].

4. Conclusion and outlook

The presented architecture with integration of Web3 and
Ocean Protocol’s mechanisms as well as Gaia-X into FL could
lead to more efficient, transparent and participatory AI develop-
ment, unlocking value across industries while ensuring compli-
ance with increasingly stringent data protection regulations.

An implementation of the approach is deployed to three
very similar ProfiTrainer PT16 CNC milling machines from
the EuProGigant validation platform demonstrator network. In
a first step the benefits of federally trained ML models over
models that are only trained with data from a single machine
will be evaluated. Further research should address the possibil-
ity to include machines of the same model type but with differ-
ences in mechatronic components, in our case the addition of a
ProfiTrainer PT16 with a Beckhoff CNC instead of a Siemens
CNC, and the therefore necessary enlargement of the data basis
for model training in regards to the number of machines and
samples. Also an increase of the sampling frequency from the
currently used 8 Hz, limited by the OPC UA server, to values
of at least 100 Hz is planned.
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gien im europäischen Rechtsrahmen. Springer, Berlin. doi:https://doi.
org/10.1007/978-3-662-67556-4_2.

[27] Suzuki, J., Lameh, S.F., Amannejad, Y., 2021. Using transfer learning
in building federated learning models on edge devices, in: 2021 Second
International Conference on Intelligent Data Science Technologies and
Applications (IDSTA), pp. 105–113. doi:10.1109/IDSTA53674.2021.
9660819.
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